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Abstract

Recent research has demonstrated that word learners can determine word-referent mappings by

tracking co-occurrences across multiple ambiguous naming events. The current study addresses the

mechanisms underlying this capacity to learn words cross-situationally. This replication and exten-

sion of Yu and Smith (2007) investigates the factors influencing both successful cross-situational

word learning and mis-mappings. Item analysis and error patterns revealed that the co-occurrence

structure of the learning environment as well as the context of the testing environment jointly

affected learning across observations. Learners also adopted an exclusion strategy, which contributed

conjointly with statistical tracking to performance. Implications for our understanding of the pro-

cesses underlying cross-situational word learning are discussed.
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1. Introduction

The notion that children learn words at least in part by tracking the common contexts in

which a given word is uttered is neither a novel nor an unintuitive idea. Although many lan-

guage acquisition scholars (e.g., Carey, 1978; Gleitman, 1990; Pinker, 1989) have argued

that cross-situational learning plays a pivotal role in children’s lexical acquisition, empirical

demonstrations of this learning capacity are relatively scarce. Indeed, research on how chil-

dren learn the meanings of words has focused predominantly on the mechanisms underlying

children’s word learning within a single observation or naming event (so called fast
mapping; for reviews see Bloom, 2000; Golinkoff et al., 2000).
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Recently, however, a number of studies have revealed that infants (Smith & Yu,

2008), toddlers (Akhtar & Montague, 1999), and adults (Gillette, Gleitman, Gleitman, &

Lederer, 1999; Yu & Smith, 2007) are capable of learning words across multiple observa-

tions. For example, in one recent study, Yu and Smith (2007) presented adult learners

with a series of naming events in which they heard multiple words and saw multiple

pictures. Although each word always occurred with its referent across naming events,

other words and other pictures were also present during any given event, leading to

referential ambiguity within each event. Importantly, words and pictures were repeated in

various permutations across naming events, leading to more reliable co-occurrences

between words and their referents than between words and distractor objects. Despite

only viewing a handful of repetitions of each word-picture pairing, adult learners

correctly identified which words co-occurred most reliably with which pictures at above

chance rates (Yu & Smith, 2007).

Yu and Smith’s findings have more recently been extended to infant word learners (Smith

& Yu, 2008; Yu & Smith, 2011; see also Vouloumanos & Werker, 2009), highlighting the

fact that this learning capacity is readily available early in development and thus raising the

possibility that it plays a role in children’s early word learning. Despite this recent evidence

of cross-situational word learning across development, the processes and factors that make

this form of learning possible are relatively unknown. The broad goal of the current study is

to shed light on the mechanisms underlying cross-situational word learning.

The logic behind successful learning in Yu and Smith’s task, and cross-situational word

learning more generally, is that within-trial or within-situation referential ambiguity requires

learners to track multiple possible referents for each observed use of a word. Learners can

then compare the set of possible referents across observations to arrive at the most probable

referent for each word (Siskind, 1996; Yu & Smith, 2007). Recently, K. Smith and col-

leagues have proposed that a process other than computation of cross-situational statistics

may also account for Yu and Smith’s findings (Smith, Smith, & Blythe, 2009). They argue

that a learner who simply keeps track of the set of objects and words present during a single

learning trial could successfully perform above chance in Yu and Smith’s task. This is possi-

ble because the testing regimen implemented by Yu and Smith (a four-alternative forced-

choice task) constrains learners’ referent selections to four items (the target picture and three

foil pictures). Importantly, the probability with which the three foil items also co-occurred

with the target word during the single encoded learning trial was relatively low. Thus, dur-

ing test, the learner could perform at above-chance rates by simply selecting at random from

the available pictures that had also been presented during the single encoded learning trial

for that particular word.

Smith et al.’s (2009) alternative account highlights the notion that a variety of mecha-

nisms could potentially explain successful cross-situational word learning. In the current

experiment, we investigate these mechanisms by replicating Yu and Smith’s original find-

ing and examining the factors influencing successful learning as well as mis-mappings. We

propose to accomplish this in the following ways. First, we examine the role of the statisti-

cal structure of the learning environment (as stressed by Yu and Smith) on the learning

process. As described above, within the learning phase of Yu and Smith’s cross-situational
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word learning paradigm, learners view a series of ambiguous situations involving multiple

words and multiple pictures. Thus, a cross-situational statistical learner creates associations

not only between words and their correct referents but also between words and distractor

pictures that are the referents of other words also presented during the trial (spurious corre-
lations). As learning trials are constructed by randomly selecting four word-referent

pairs for each trial, there is variability in the strength and number of possible spurious

correlations formed for each word across trials. That is, during learning, some words may

appear many times with few distractors, creating a small number of strong spurious corre-

lations. In contrast, other words may appear few times with many distractors, creating

many weak spurious correlations. In the current experiment, we ask to what extent these

variations (i.e., differences in contextual diversity, Kachergis, Yu, & Shiffrin, 2009) affect

learning.

Three recent findings suggest that the structure of the learning environment does have an

influence on statistical word learning. First, in Yu and Smith’s original study, participants in

a condition with a larger to-be-learned lexicon acquired more words than participants in a

condition with a smaller lexicon to learn. Yu and Smith argued that this pattern reflects the

fact that the smaller lexicon resulted in fewer competitors and thus stronger spurious corre-

lations. Second, Kachergis et al. (2009) demonstrated that systematically manipulating the

diversity in the learning contexts in which words appear impacts cross-situational statistical

learning; within the same to-be-learned lexicon, words with many weak spurious correla-

tions elicited higher learning rates during test than those with fewer, stronger spurious corre-

lations. A third reason to suspect that spurious correlations may affect learning is that word

learners appear to readily track multiple word-to-referent mappings (Vouloumanos, 2008;

Vouloumanos & Werker, 2009). That is, adult word learners (and to some extent infant

word learners, see Vouloumanos & Werker, 2009) appeared sensitive not only to high-

frequency pairings but also to low-frequency pairings. Based on these findings, we predict

that variability in the co-occurrence structure of the learning environment should affect

which words are learned best.

A second goal of the current experiment is to examine whether the testing environment’s

context influences performance independent of the structure of the learning environment.

Test trials in this design involved presenting a target word with four possible referents (the

target picture and three foils). As foils were randomly selected, some words were tested with

foils that co-occurred often with the target word during learning while other words were

tested with foils that co-occurred rarely or not at all with the target word during learning.

We predicted that performance should vary as a function of the probability with which foils

served as distractors during learning. Thus, in addition to exerting influence within the learn-

ing process, co-occurrence statistics should also have an effect during test. Of particular

interest is the extent to which these effects are independent of one another, as this may

disambiguate between the single-exposure learner and statistical learner accounts of cross-

situational word learning. We suggest that although both cross-situational learning and

single-trial accounts would predict an effect of testing environments on performance, only

the cross-situational learning account would predict an independent effect of the learning

environment’s statistical structure on performance.
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A third goal of the current experiment is to examine influences of additional mechanisms

beyond tracking of co-occurrence statistics on cross-situational word learning. One

candidate mechanism that has previously been proposed to play a prominent role in cross-

situational word learning (e.g., Siskind, 1996; Yu, 2008) is mutual exclusivity (Markman &

Wachtel, 1988). Briefly, the mutual exclusivity constraint refers to a word learner’s default

tendency to accept only one word for each object (Markman, 1992). This assumption may

aid cross-situational word learning in several ways. Across the learning phase, mutual exclu-

sivity simplifies the learning process by limiting the hypothesis space and guiding the lear-

ner away from entertaining many-to-one or one-to-many word-referent mappings. Mutual

exclusivity may also contribute to performance as learners can use known word-referent

mappings to rule out possible referents for unknown words, either during learning (Ichinco,

Frank, & Saxe, 2009; Yurovsky & Yu, 2008) or during test (e.g., Diesendruck & Markson,

2001; Markman & Wachtel, 1988). In this study, we investigate participants’ use of this

strategy in the cross-situational learning paradigm by examining the extent to which knowl-

edge of (i.e., having successfully mapped labels for) the foils at test constrains referent

selection for the target word.

A final goal of the current study is to provide some insight into the automatic and non-

strategic nature of participants’ learning via cross-situational observations. Yu and Smith

(2007) reported anecdotal evidence that participants in their task verbally reported learning

very few words (see also Ichinco et al., 2009). This anecdotal evidence is reminiscent of

previous investigations demonstrating that the learning of linguistic and non-linguistic

statistical structures proceeds incidentally (e.g., Saffran, Newport, Aslin, Tunick, & Barru-

eco, 1997) and automatically (e.g., Turke-Browne, Junge, & Scholl, 2005). As a first step in

assessing the automaticity of cross-situational word learning, we compared participants’

performance to their own explicit judgments of their performance during a post-experiment

interview.

2. Methods

2.1. Participants and stimuli

Forty-five adults participated for course credit or cash compensation. Our design repli-

cated the 4 · 4 condition of Yu and Smith’s (2007) first experiment. We recorded 54 spoken

bisyllabic novel words (e.g., ‘‘bicket’’) and generated 54 pictures of uncommon or novel

objects (e.g., a phototube). Each word was randomly paired with a picture and these pairs

were divided into three blocks of 18 word-picture pairings.

2.2. Design and procedure

In each block, participants completed a learning phase followed by a test phase. In each

trial of the learning phase, participants saw four randomly selected pictures appearing simul-

taneously on a 17-inch computer monitor, one in each quadrant, and heard four spoken
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words corresponding to the four pictures played sequentially in a randomized order (with

2 s of silence between words, see Fig. 1). Each of the 18 word-picture pairings occurred in

six trials, yielding a total of 27 learning trials per block. Because participants heard four

words on each learning trial, words co-occurred not only with the correct corresponding pic-

ture but also with other distractor pictures (accompanied by their corresponding words). The

association matrix presented in Fig. 2 illustrates an example of the relative frequencies with

which words (columns) co-occur with different pictures (rows) throughout learning.

Although all words occurred six times during the learning phase and appeared with three

distractors on each learning trial, the number of different distractors with which a word co-

occurred as well as the frequency with which a given distractor co-occurred with a given

word varied across items due to the randomized construction of the learning trials. The

frequency with which any given word appeared with any given distractor varied from 0 to 4

times (M = 1.10, SD = 0.091). The number of unique distractors with which any given word

co-occurred varied from 8 to 15 (M = 11.96, SD = 1.51). Thus, some words co-occurred

frequently with a smaller number of distractor pictures, creating the potential for learners to

detect a small number of strong spurious correlations, whereas other words co-occurred

infrequently with a larger number of distractors, creating the potential for many weak spuri-

ous correlations.

The test phase immediately followed the learning phase for each block and consisted of

18 four-alternative forced-choice test trials, one per target word. In each trial, four pictures

appeared simultaneously followed after 2 s by the presentation of one word. Participants

indicated using the mouse which picture went with the target word. Test trials were con-

structed by selecting the target word’s corresponding picture and three randomly selected

foils, with all pictures serving as foils equally often. Random selection of test foils yielded

variability in the associative strength of foils for each target word. After completing all three

blocks, participants estimated their accuracy, responding to the question, ‘‘What percentage

of words do you think you got right?’’

(A) (B)

Fig. 1. Example series of learning trials (A) and test trial (B). During learning in the experiment no word-picture

pairing appeared on back-to-back learning trials.
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3. Results

We closely replicated the learning levels demonstrated by Yu and Smith’s participants.

Participants learned roughly half of the items (M = 0.503, SD = 0.18), a significantly higher

proportion than predicted by chance (0.25), t(44) = 9.55, p < .001, d = 1.42. Interestingly,

their performance estimates (M = 0.34, SD = 0.22) were significantly lower than their

actual performance, t(44) = 4.59, p < .001, d = 1.44, consistent with previous anecdotal

evidence that participants were unaware of their learning success. However, participants’

performance estimates were significantly correlated with their actual performance,

r(43) = .363, p < .05, suggesting some explicit awareness of performance (see Fig. 3).

3.1. Effects of distractor co-occurrence and test foil interference

We examined whether learners formed spurious correlations with high probability

distractors during learning and the extent to which these spurious correlations interfered

with learning. To test this we calculated, for each word, the average probability with which

distractors co-occurred across the six learning trials in which the word occurred. Each word

had 18 possible distractor slots (three per trial over six trials). Some candidate distractor

pictures were presented more often than others and some not at all. To illustrate, in the

Fig. 2. Sample association matrix of word and picture pairings. Figure indicates how many times each word co-

occurred with each picture across learning trials for a single learning block. Each word occurred on six learning

trials. Empty cells denote that the word did not co-occur at all with a given picture.
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example, in Fig. 2, Word 1 (W1) co-occurred with one distractor picture (Picture 2) on three

of the six learning trials (resulting in .50 probability of co-occurrence), five pictures (Pic-

tures 3, 4, 6, 8, 12) on two trials each (.333 probability) and five pictures (Pictures 5, 7, 9,

14, 18) on one trial each (.167 probability). Thus, average probability of distractor co-

occurrence for this word was .27.

Average distractor co-occurrence probability varied from .20 to .375 (M = 0.255,

SD = 0.03). For each participant, we compared the average distractor co-occurrence proba-

bility for the items in which subjects answered correctly versus incorrectly during test.

Average distractor co-occurrence probability was slightly but significantly greater for incor-

rect (M = 0.259, SD = 0.007) than correct items (M = 0.253, SD = 0.005,), t(44) = 3.98,

p < .001, suggesting that learners’ detection of spurious correlations during learning inter-

fered with the learning of that word.

To examine the effects of the relationship between distractors during learning and foils at

test, we calculated average test foil strength for each word, based on the probability with

which each of the three foils in the test trial had co-occurred with the target word during the

learning phase. For example, if Pictures (P) 2, 8, and 10 (see Fig. 2) acted as test foils for

W1, the test foil strength for W1 would be .22. This is obtained from averaging the probabili-

ties with which P2 (.50), P8 (.167), and P10 (.000) had co-occurred with W1 during learning.

Average test foil strength ranged from 0 to .389 (M = 0.179, SD = 0.08). We compared

the average test foil strength for items on which participants responded correctly versus

incorrectly. We found that average test foil strength was higher for incorrect items

(M = 0.184, SD = 0.02) than correct items (M = 0.173, SD = 0.02), t(44) = 2.41, p < .05,

suggesting that the presence of foils in test that had co-occurred with the target word during

learning and the frequency with which they had co-occurred influenced performance during

test.

One goal of this experiment was to examine the relative contributions of distractor

co-occurrence probability during learning and test foil strength during test in predicting

participants’ learning. An independent effect of distractor co-occurrence probability during

Fig. 3. Correlation between participants’ estimated performance and actual performance levels.
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learning (i.e., contextual diversity) would support a cross-situational, as opposed to a single-

trial learning account of participants’ learning strategy. To test this, we employed a general-

ized linear mixed model with generalized estimating equations. This analysis was selected

because the dependent variable was binary (correct vs. incorrect), as well as to account for

the fact that each participant contributed multiple data points. The model predicted whether

an item would be answered correctly as a function of (a) the item’s average distractor

co-occurrence probability, and (b) the item’s average test foil strength.

The results of the model can be seen in Model 1 in Table 1. We found that the coeffi-

cients for both distractor co-occurrence probability, p < .001, and test foil strength,

p = .001, were significant. These findings were consistent across blocks. A model that

included block as a predictor, as well as interaction terms between block and our variables

of interest, revealed no significant effect of block and no significant interactions. Thus, the

structure of the learning environment and the relationship between learning and test environ-

ments exerted distinct influences on performance in this cross-situational learning paradigm.

These findings indicate that learners cannot be employing exclusively a single-trial learning

strategy.

These conclusions are bolstered by an analysis of individual patterns. We classified each

participant’s performance based on whether his or her performance was affected by (a) the

statistical structure of the learning environment, (b) the associative strength of the foils in

testing, (c) both, or (d) neither. Participants’ performance was considered affected by the

structure of the learning environment if their average distractor co-occurrence probability

was greater for incorrect compared to correct items. Likewise, participants’ performance

was considered affected by the testing structure if their average test foil strength was greater

for incorrect compared to correct items. As can be seen in Table 2, a large majority of par-

ticipants were jointly affected by both the structure of the learning environment and testing

context (v2 = 19.44, p < .001), consistent with the group-level findings. Nonetheless, some

participants appeared affected by only one of the two factors and some were not systemati-

cally influenced by either, underscoring that there is variability in the sources of information

that learners reliably tracked.

Table 1

Coefficient estimates for mixed-model logistic regressions predicting item accuracy

Statistics

Wald v2 Sig Odds Ratio (OR)

Model 1

Predictors

Distractor co-occurrence probability 13.4 <.001 0.54

Test foil strength 10.12 .001 0.17

Model 2

Predictors

Distractor co-occurrence probability 11.48 .001 0.52

Test foil strength 8.03 .005 0.17

Known items 100.81 <.001 1.85
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3.2. Analysis of error patterns

We also examined learners’ sensitivity to co-occurrence statistics by analyzing partici-

pants’ error patterns. We reasoned that the probability with which an item would be selected

erroneously during test should reflect the co-occurrence strength between that item and the

target word established during learning. To test this, we calculated, for each participant, the

proportion of trials on which participants selected foils at test that had co-occurred with

target words on 0, 1, 2, 3, or 4 of the 6 learning trials (corresponding to co-occurrence

probabilities of 0, .167, .333, .5, and .667, respectively). An analysis of variance (anova) on

proportion of choices revealed a significant effect of level of co-occurrence, F(4, 44) =

5.78, p < .001, g2
p = .116. Follow-up comparisons revealed that there were no differences

among the 0, .167, .333, and .5 probability foils (smallest p > .10). However, as seen in

Fig. 4, participants selected the .667 probability foil significantly more often than they did

the lower probability foils (all ps < .05). This finding highlights participants’ sensitivity

to word-distractor co-occurrence statistics but also suggests that participants were particu-

larly lured by the presence of a high probability competitor. At first glance, these findings

appear to contradict Yu and Smith’s finding that there was no systematicity in foil selection

based on foil-target co-occurrence. However, Yu and Smith’s original design did not include

Table 2

Individual pattern distributions of factors affecting performance

Test Foil Strength

INC > COR INC £ COR

Distractor co-occurrence probability INC > COR 24 7

INC £ COR 6 8

Note. COR, correct items; INC, incorrect items.

Fig. 4. Proportion of foil selection as a function of the target-foil co-occurrence probability.
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any foils that co-occurred with the target with a probability above .50, raising the possibility

that only foils with a relatively high threshold of co-occurrence may lure participants.

Although performance was disproportionately affected by high co-occurring foils, this does

not imply that lower levels of foil-target probability have no effect on behavior. When we

repeated our models and excluded trials containing the highest probability competitors (i.e.,

the .667 probability foils), test foil strength (ps < .01) nonetheless remained a significant

predictor.1

3.3. Exclusion constraint on task performance

We also discovered that task success was not driven exclusively by cross-situational sta-

tistics. Knowledge of the correct word mappings for foils (as indicated by participants’

accuracy when those foils were tested as targets) also constrained performance on test trials.

Specifically, accuracy on test trials varied as a function of the number of foil objects

(between 0 and 3) participants had correctly mapped (see Fig. 5). An anova comparing

accuracy as a function of the number of foils known revealed a significant main effect of foil

label knowledge on item accuracy, F(3, 36) = 12.69, p < .001, g2
p = .25. Importantly, even

for trials in which participants knew none of the foils, performance was still significantly

above chance, t(41) = 2.89, p < .01.

We conducted a second mixed-model logistic regression that was identical to the model

described above with the exception that number of known foils was added as a third predic-

tor variable. As seen in Model 2 reported in Table 1 all three variables independently con-

tributed to predicting item accuracy. These findings were consistent across blocks. A model

that included block as a predictor yielded no significant effect of block, and no significant

interactions. This suggests that statistical computations and elimination of foil candidates as

potential referents conjointly contributed to performance in this cross-situational word

learning paradigm.

Fig. 5. Mean accuracy as a function of the number of known foils.
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4. Discussion

A number of recent reports studying a wide range of age groups have convincingly dem-

onstrated that word learning through the computation of cross-situational statistics is well

within the repertoire of human learners (Akhtar & Montague, 1999; Gillette et al., 1999;

Smith & Yu, 2008; Yu & Smith, 2007). Furthermore, several computational models have

successfully learned words cross-situationally using inputs derived from transcriptions

of real parent labeling behavior (Frank, Goodman, & Tenenbaum, 2009; Yu, 2008; Yu &

Ballard, 2007). This highlights the plausible role of cross-situational learning as a

mechanism underlying children’s lexical acquisition. The goal of the current study was to

use detailed behavioral analyses as a window into the range of mechanisms and factors

influencing cross-situational word learning.

4.1. Effects of co-occurrence statistics during learning and test

Item and error analyses revealed that the strength of spurious correlations during learn-

ing and the associative strength between the target word and foils present at test indepen-

dently affected cross-situational learning. We suggest that the independent effect of the

structure of the learning environment on learning challenges the notion that learners’ suc-

cess can be accounted for exclusively by single-trial learning (Smth et al., 2009). That is,

although both a single-trial learning and a cross-situational learning account predict an

effect of the testing context on successful learning, only a cross-situational learning

account predicts an independent effect of statistical structure of the learning environment

on learning. This is because differing levels of spurious correlations (a measure of learn-

ing environment structure) arise only across observations, and a single-exposure learner

would not encode multiple observations of a given word. Thus, the effect of spurious cor-

relations during learning implies that participants tracked co-occurrence statistics across

multiple learning events rather than simply encoding an individual naming event for each

word. These results are consistent with Yu and Smith’s original proposal of how learning

in this task occurs across situations, as well as the finding that adult learners show sensi-

tivity to fine-grained co-occurrence information in other word-learning paradigms

(Vouloumanos, 2008).

There are two possible explanations for why spurious correlations during learning may

have influenced performance. First, items with low spurious correlations may have been eas-

ier to learn because the words occurred across more variable contexts (i.e., with a greater

diversity of distractors) during learning. Indeed, recent evidence suggests that greater con-

textual diversity aids cross-situational word learning (Kachergis et al., 2009). Alternatively,

the items with high spurious correlations may have been more difficult to learn due to the

presence of strong competitors (distractors that co-occurred often with a word). Although

future work may be able to tease apart the effects of contextual diversity from that of strong

foil competition, contextual diversity and strong competition are typically highly negatively

correlated.
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4.2. Constraints on cross-situational word learning

Although our findings lend support to the notion of statistical learning mechanism under-

lying cross-situational learning, we found evidence that processes other than statistical

learning also played a role. Specifically, performance on this task varied as a function of

participants’ knowledge of foils during test. That is, participants were more likely to select

the correct target if they had correctly mapped labels to the foil pictures present during the

test trial. This pattern of result suggests the use of an exclusion strategy at test, identifying

the correct referent by ruling out alternatives. This finding underscores the fact that in-the-

moment mechanisms can augment cross-situational statistical word learning (see also, Ichin-

co et al., 2009; Siskind, 1996; Yu, 2008; Yu & Smith, 2007; Yurovsky & Yu, 2008). It is

clear from these findings that both exclusion and statistical learning contributed to perfor-

mance because (a) the effects of distractor co-occurrence probability and test foil strength

on item accuracy were independent of the effect of exclusion; (b) even in situations where

participants knew none of the foils, performance was still above chance rates; and (c) use of

foil knowledge as a basis for exclusion, would have required acquisition of foil knowledge,

at least in part, via cross-situational learning. Thus, our findings reflect how participants

recruit statistical learning and word learning constraints conjointly to determine word-

referent mappings.

4.3. The automatic nature of cross-situational word learning

Our finding that participants’ explicit judgments vastly underestimated their actual learn-

ing rates is consistent with previous anecdotal evidence of participants’ lack of awareness of

cross-situational word learning (Ichinco et al., 2009; Yu & Smith, 2007). Given the coarse-

ness of our measure of participants’ awareness of learning, future studies should utilize

more established indices of implicit knowledge, such as associative priming (see Seger,

1998), to provide a more direct test of the implicit nature of cross-situational learning. How-

ever, despite its simplicity, participants’ verbal reports were positively correlated with their

learning rates, suggesting that our explicit measure captured some sensitivity to learning.

4.4. Implications and future directions

One important avenue by which researchers have gained insight into the mechanisms

underlying cross-situational learning is through computational modeling (e.g., Frank et al.,

2009; Siskind, 1996; Yu, 2008). However, as some have noted (Frank et al., 2009; Ichinco

et al., 2009; Yu, Smith, Klein, & Shiffrin, 2007), a number of computational instantiations

using distinct underlying architectures and assumptions can successfully model accuracy in

Yu and Smith’s cross-situational learning task, leaving open the question of which model

best approximates learners’ performance. We suggest that comparing how different models

account for patterns of behavior beyond accuracy (such as effects of spurious correlations

during learning, effects of competing referents, and error patterns at test) may help to arbi-

trate among the learning mechanisms proposed by these models.
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Another important avenue for future research is to investigate whether the dynamics of

the learning process observed here in adults extend to early word learning in children. A

number of recent studies have documented that 12- to 18-month-old infants learn cross-situ-

ationally in paradigms akin to the ones used in adult word learning studies (e.g., Smith &

Yu, 2008; Vouloumanos & Werker, 2009), but it is unclear whether the same constellation

of factors reported here also shapes infant word learning. For instance, will infants be more

likely to learn words when those words are presented in a more diverse set of contexts?

Some evidence (Gomez, 2002; Rost & McMurray, 2009, 2010) suggests that variability

facilitates word learning, whereas other evidence suggests that children’s word learning is

facilitated by limited variability (Maguire, Hirsh-Pasek, Golinkoff, & Brandone, 2008).

Thus, extending the current findings to children’s cross-situational word learning may shed

light not only on the dynamics of early lexical acquisition but also on issues in early learn-

ing more broadly.

5. Conclusions

The findings reported here shed light onto the learning processes underlying adult cross-

situational word learning. Yu and Smith’s clever experimental design lends itself to rich

behavioral analyses, which offers a window into these learning dynamics. Our results pro-

vide support for Yu and Smith’s original claim that a cross-situational statistical learning

mechanism, and not a single-trial learning mechanism, underlies performance in this task.

Our findings also highlight the complexity of the cross-situational learning process, indicat-

ing that multiple sources of information (statistical learning and exclusion constraints) are

used conjointly to facilitate learning.

Note

1. When examined at the subject-, rather than the trial-level, the average foil strength for

incorrect items (M = 0.174, SD = 0.015) was marginally larger than correct items

(M = 0.167, SD = 0.02), t(44) = 1.66, p = .10. These analyses are consistent with the

trial-level data. Test foil probability matters, but this is especially true when the high-

est co-occurring foil is present.
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