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Review
Recent theory and experiments offer a new solution
regarding how infant learners may break into word
learning by using cross-situational statistics to find
the underlying word–referent mappings. Computational
models demonstrate the in-principle plausibility of this
statistical learning solution and experimental evidence
shows that infants can aggregate and make statistically
appropriate decisions from word–referent co-occurrence
data. We review these contributions and then identify
the gaps in current knowledge that prevent a confident
conclusion about whether cross-situational learning is
the mechanism through which infants break into word
learning. We propose an agenda to address that gap that
focuses on detailing the statistics in the learning envi-
ronment and the cognitive processes that make use of
those statistics.

Introduction
The world offers data to novice word learners in the form of
word–object co-occurrences. These data may be noisy with
many spurious co-occurrences (Figure 1). Thus a core
problem for theories of early word learning is determining
how infants manage to find the right word–referent pairs
in the noise. The evidence indicates that by their first
birthday, if not before, infants have already found a con-
siderable number of these correspondences [1–3]. Older
word learners, 2-year-olds, employ knowledge about social
cues, language, and categories to map words to referents;
however, this knowledge develops over the course of word
learning and may be partly a product of word learning
itself [4–8]. Thus the field lacks an understanding of how
early word learning starts. Recent theory and experiments
offer a new solution: novice learners may break into word
learning through the noisy co-occurrence data, using
cross-situational statistics to find the underlying word–
referent mappings. We begin with a review of the models
that show the in-principle plausibility of this solution,
followed by the experimental evidence showing that
infants aggregate and make statistically appropriate deci-
sions from co-occurrence data. We then turn to the critical
question: could this solution work for infants in the real
world? The answer depends on a better understanding
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than we currently have of the relevant statistics in the
learning environment and the cognitive processes that
make use of those statistics.

Finding structure in co-occurrences
The classic debate in the study of early word learning pits
hypothesis testing against associative learning [6,9].
Recent computational advances have blurred the distinc-
tion; models from both frameworks can operate over the
same co-occurrence data to yield the same learning
patterns (Box 1). Accordingly, we ignore this classic divide
to focus on four new contributions.

There is discoverable structure in word–scene co-

occurrence data

Several researchers have applied statistical learning algo-
rithms to word–scene co-occurrence data taken from audio
and video recordings of infants in common everyday activ-
ities (i.e., an infant interacting with a parent). The algo-
rithms, expressed as either Bayesian inference models [10]
or machine translation models [11–13], readily succeed in
discovering the underlying word–referent pairings from
real-world co-occurrences. Although these powerful models
may not be psychologically realistic [9], they show that
there is significant structure in the co-occurrence data such
that the co-occurrences –along with statistical learning
mechanisms – might be enough for infants to discover
the mappings of words to objects.

Statistical learning is about learning a system of

co-occurrences

Statistical learning models succeed because they operate
on the set of co-occurrence data with the goal of simulta-
neously learning multiple words and referents. Within
these models, the strength of an individual word–referent
association (or the probability of a hypothesis) is not
strictly a property of that word–referent pair alone. In-
stead, it interacts with and is embedded in the other
regularities in the co-occurrence matrix, regularities that
enable the learning machinery to exploit correlations
[14–16], coherent covariation [15,17], and the structure
in the whole matrix [18–20] to discover the underlying
correspondences.

Word–referent pairs compete

One mechanism through which cross-item dependencies
can influence learning is competition. Most current statisti-
cal models of cross-situational learning optimize solutions
in which each unique word is linked to just one referential
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Figure 1. Series of scenes and words and the co-occurrence matrix. (A) Example scenes and co-occurring language as experienced by an infant. (B) A sample of the scenes

and co-occurring words in Smith and Yu [26]. Within a trial there was no information regarding which object was the referent of each word. Across the 30 trials, each correct

word–referent pair occurred ten times and each spurious correspondence only twice. Test trials (not shown) consisted of the presentation of two objects but one word.

Looking duration to the target referent was the dependent measure. (C) The ‘novelty trap’ set by Smith and Yu [29] presented blocks of trials in which one object was

repeated at the same location within a block and the other location showed non-repeating objects. The final statistics were the same as in Smith and Yu [26] and testing was

the same. (D) The interleaved trials in the Vlach and Johnson study [34], arranged so that some word–referent pairs were adjacent and others were distant in the series. Final

statistics and testing were comparable with the Smith and Yu studies.
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category. Sometimes known as the mutual-exclusivity
principle, strong word–referent mappings are proposed
to block or inhibit other mappings that contain overlap-
ping components [9,21]. Such competition may also be
responsible for the disambiguation (also known as ‘fast-
mapping’) phenomenon in young children (Figure 2).
However, within the models competition may be implicit
and operate on partial (not behaviorally evident) knowl-
edge [21]. For infant learners, this competition could
mean that strong evidence for some mappings effectively
‘cleans up’ the data, helping the learning of weaker and
noisier (non-competing) contingencies.

Statistical learning models learn to learn

Infants become better word learners as they learn more
words. This is evident in the vocabulary spurt [22], an
increase in the rate of receptive and productive vocabu-
lary that typically emerges as infants approach their
second birthday, as well as in several other emergent phe-
nomena that are predicted by, and predictive of, infants’
252
vocabularies (Figure 2). Numerous models, including
both associationist and probabilistic inference, have shown
how these properties of early word learning may be
driven by the statistics of word–referent co-occurrences
[14–16,18,19,22–25]. Thus, statistical learning – and the
structure in word–referent co-occurrence data – might not
just start infant word–referent learning but might also build
the knowledge-based reduction of uncertainty that is
evident in older word learners.

In sum, the extant models serve as compelling demon-
stration proofs. They show that there is structure in the co-
occurrence data. They shift the empirical question from
how infants learn individual word–referent pairs to how
infants operate on the statistical regularities within a
system of words and referents to learn multiple words
simultaneously. They highlight the potential importance
of mutual exclusivity and competition among word–refer-
ent pairings as critical to the process and they yield
developmental patterns of learning that are consistent
with patterns observed in infant learners. With a few



Box 1. Hypothesis testing and associative learning

A the computational level, models of statistical word–referent

learning may be characterized and formulated in terms of three

components, as in Figure IA: assumptions about the co-occurrence

data on which the learning system operates, the statistical computa-

tions that are performed, and the learning outcomes that are

achieved. The proposed statistical computations are generally seen

as the main claim being made by the model. Within associative

theories, these computations emerge from the strengthening and

weakening of associations as a function of co-occurrence strength

and competition among associations. Within hypothesis-testing

theories, conceptually coherent hypotheses are confirmed or dis-

confirmed through various statistical procedures. These two frame-

works thus offer fundamentally different characterizations of what it

means to be a statistical learner. However, to simulate performance in

a task, models of both classes must (implicitly or explicitly) specify

several separable processing components, as illustrated in Figure IB.

First, they must specify the information selected within a learning

moment. The information selected within a learning trial could be

narrow (one word and one referent per learning moment) or broad

(many co-occurring word–referent pairs) or even change with

learning (beginning broad and then becoming narrower as more is

known). Many or few hypothesized or association pairs may be stored

in memory and thus tracked. As part of the statistical computation,

models must specify how the tracked information is aggregated and

represented, including, for example, whether that stored information

(knowledge) is represented in an all-or-none or probabilistic fashion.

Finally, to simulate the learning outcome, the model must also specify

the decision processes at test, including how information is retrieved.

For example, the participant may make all-or-none decisions from

graded statistics or make graded responses from the same data, and

these decision processes, from the same represented knowledge,

could vary with testing context. In a series of simulations, Yu and

Smith [9] showed that these component decisions interact in

complex ways within both classes of associative-learning and

hypothesis-testing models. Indeed, very simple associative models

could mimic sophisticated hypothesis-testing models, producing the

same learning patterns although with different internal components.

In brief, the two classes of model cannot be discriminated when

formulated at the computational level in Figure IA but only by direct

assessments of the proposed learning mechanism in the context of

explicitly specified supporting processing components, as shown in

Figure IB, and all of them should be informed by empirical evidence

on infant attention and memory systems, as well as decision

processes.
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Figure I. Many current models of cross-situational learning are formulated at a high conceptual level with just three components, as shown in (A): the data (assumed or

measured co-occurrences in the world); the learning mechanism (a set of statistical computations performed on the data); and the demonstrated learning outcome.

However, to simulate the performance of human learners, the model must – implicitly or explicitly – make decisions about other components of the learning system.

Because these components interact in complex ways, these decisions can yield multiple but very different paths to the same learning outcomes or performance.
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exceptions they do not attempt to model the real-time
psychological processes – attention, memory – essential
to actually learning words (9,15).

Infants aggregate co-occurrence data
The cross-situational word-learning task was invented to
answer the question of whether infants can do what the
models propose: learn multiple word–referent pairs from
noisy co-occurrence data. On each trial in the task
(Figure 1B), infants hear two words and see two objects
with no information about which word goes with which
object. However, across trials each individual word always
co-occurs with just one referent; thus there is across-trial
certainty despite within-trial uncertainty, if learners
aggregate the co-occurrence data across trials. Smith and
Yu [26] (replicated [27]) presented 12- and 14-month-old
infants with a randomly ordered stream of 30 such trials
with six novel words and six novel objects. At the end of
this experience, the infants’ word learning was measured
using a two-alternative preferential-looking procedure: two
visual objects were presented in the context of one spoken
word and looking time to the statistically correct referent of
that word was measured. The results showed that the
infants looked more to the correct referent than the foil
on hearing the associated name. Moreover, analyses of
individual word pairs and individual infants suggested
that most infants learned four or more word pairs. To do
this, infants must have attended to, stored, and in some way
253
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Figure 2. Developmental changes in word learning. Children show knowledge of words and referents early, in both receptive and productive knowledge, with new words

added slowly at first and then more rapidly just before the second birthday [1–4,14,22]. The period of rapid learning is also associated with increasingly sophisticated novel

word-learning strategies measured in the laboratory, including referential disambiguation [7,14] and kind-specific generalizations [5,15,19]. In the disambiguation task,

children are reminded of the names of objects that they know and then a novel object is presented with a novel name; children consistently interpret the novel name as

referring to the novel object. This disambiguation or fast mapping of a novel name to an object is sometimes considered an example of the mutual-exclusivity principle of

one name per object [9,21]. The shape bias is an example of a kind-specific generalization. When children are told the name of a novel artifact, they generalize that name to

other objects by similarity in shape; for substance-like novel objects, however, they systematically generalize the name by material [15].
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statistically evaluated the system of word–referent co-occur-
rences. In a subsequent study, Vouloumanous and Werker
[28] showed that 18-month-old infants tracked both high-
and low-frequency contingencies within a data set of word-
to-object co-occurrences, a result consistent with the notion
that infants track a system of regularities, not just the most
dominant ones.

Two additional studies revealed that infant statistical
learning is constrained by developing attention and mem-
ory processes. Smith and Yu [29] disrupted word–referent
learning in 12–14-month-old infants by setting a novelty
trap such that within each learning trial one potential
referent was more salient than the other. They did this
by ordering the training trials (Figure 1C) so that one
object (and its location) was repeated within blocks of five
trials whereas the other location showed a new object on
each trial within that block of trials. Across the 30 trials,
each object served equally often as the constant object and
as one of the non-repeating objects, so that the final co-
occurrence statistics were the same as in Yu and Smith’s
initial [26] study. This manipulation caused about half of
the infants to attend visually to only the non-repeating
object within a trial; these infants failed to learn the
underlying word–referent correspondences. By contrast,
the infants who more successfully negotiated the novelty
trap so as to sample both potential referents within a trial
learned the underlying structure of word–referent map-
pings. Past research on visual attention indicates that
infant attention is often too stimulus driven and too sticky,
such that infants may not fully sample the available
254
information in an array [30,31]. Thus, the immature at-
tentional system could pose a serious limit on infant
statistical learning because the data available to any
statistical learning machinery are not the data in the real
world, but only the subset of that data that makes contact
with the infant’s learning system. Past research has also
shown considerable individual differences among infants
in the development of visual processing and specifically
that more flexible visual attention (less sticky, less stimu-
lus driven) is a strong predictor of later cognitive and
vocabulary development [32]. Thus, the development of
attentional processes that support broad sampling of the
co-occurrence data could be a rate-limiting factor in early
vocabulary development (see also [33]).

In a related study, Vlach and Johnson [34] reordered the
sequence of learning trials to test the role of memory in
statistical word–referent learning. They arranged the se-
ries of trials (Figure 1D) so that some word–referent pairs
were repeated on successive trials and others were repeat-
ed only after many intervening trials. They found that
20-month-old infants learned both classes of pairs, indi-
cating that they could combine information over relatively
many interleaved items. By contrast, 16-month-old infants
learned only the successively repeated pairs, raising the
question of whether the memory systems of young infants
are sufficient to aggregate information across long delays
between encounters of a word and a referent. Critically, the
statistics in all of these experiments are likely to be differ-
ent from those that characterize infant learning environ-
ments. Word–referent pairings in real-world experiences
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are likely to have a bursty structure [35], with a word–
referent pair repeating multiple times in a conversational
context followed by periods when it is rarely encountered
and then by another burst of repetitions in another coher-
ent conversation. How might this dynamic structure – and
the cumulative repetitions over days and weeks – interact
with the aggregation of information over time and with the
statistical evaluation of that information? Evidence on the
dynamic properties of co-occurrences in the world and
evidence on how these properties engage the attentional
and memory systems of infants is critically needed to
determine the scalability of cross-situational word learn-
ing (Box 2).

Statistics in the mechanisms and in the world
The models and the infant experiments suggest cross-situ-
ational word learning as a potential mechanism for early
word learning. However, the models provide computational
rather than process accounts of learning. Furthermore, the
models do not specifically model infant cross-situational
learning data. The infant cross-situational learning task
presents streams of word–object co-occurrences that are
considerably simpler than those in the world and even so
success is limited in some presentation arrangements for
learners by their developing attentional and memory pro-
cesses. Thus, the key question remains open: could cross-
situational word–referent learning work in the real world
Box 2. Statistics in time

Recent studies of infant and toddler retention of an encountered word

and referent suggest that learning is incremental and slow. For

example, toddlers who map the novel word to the novel object in the

fast-mapping paradigm in Figure 2 do not retain that mapping when

tested after delays as short as 5 min, although they show savings in

later learning [14]. Learning that is incremental and aggregates over

time requires that the learning system recognize when an item is a

repetition of a previously experienced instance. For simplicity,

consider the case, illustrated in Figure I, in which there is no within-

situation ambiguity: each moment in time presents the learner with

one object and one word. How does the learning system know to

aggregate over instances 1 and 4 – that this is a ‘repetition’? Research

on human memory [51] indicates three stimulus dimensions relevant

to the likelihood with which previous memories are activated and

combined with current input: similarity, time, and context. For

example, if the same person says ‘cup’ across two instances (rather

than if a male speaker names one and a female speaker names

another) or if the two cups are identical rather than perceptibly

Spoon Spoon TruckCup Cup

A series of  namin

Figure I. A series of naming ev
given the statistical regularities in infants’ learning envir-
onments and given the seemingly limited cognitive skills of
infants at the young ages at which initial word–referent
learning occurs?

One ongoing discussion in the literature centers on the
question of just how noisy the data are. As a counterweight
to the perhaps too-powerful statistical learning algo-
rithms, Trueswell, Gleitman, and colleagues [36,37]
attempted to measure the uncertainty of word–referent
co-occurrences in infant directed speech via what they call
the ‘Human Simulation Paradigm’ (HSP). Instead of put-
ting word–referent co-occurrences into a model, they pre-
sented adults with brief video clips of a parent talking to an
infant. The audio was removed and a sound was inserted
where the target word had been. The adults’ task on each
trial was explicitly to offer a hypothesis regarding the
intended referent by the parent at the moment of the cued
sound. Adults were very poor at this and showed no ability
to aggregate information about word–referent correspon-
dences across trials. The researchers concluded that the co-
occurrences in the real world are much too noisy to be
effectively mined by human learners. However, other
investigators using variants of the HSP method have come
to different conclusions. One study [38] found that about
50% of the naming episodes by mothers to toddlers were
not ambiguous to the adults, who could readily guess
the target referent. Another study [39] showed that the
different, the second naming event is more likely to activate and thus

strengthen the memory of the first naming event. Likewise, a second

instance that follows the first close in time is more likely than one

that follows after a delay to activate and be combined with the

memory of the first. Finally, human memory systems are highly

dependent on contextual cues for activating memories. Thus,

naming of a spoon in the context of a cereal bowl on a highchair

tray is more likely to reactivate prior memories of spoon-naming

events that also occurred in that context than would be the naming of

a spoon that is in the flatbed of a toy truck [52]. Similarity, time, and

context have all been demonstrated to play a role in toddler memory

and retention of object names [53,54], with delays (and partial

forgetting) playing a positive role in building more abstract

memories and generalizable knowledge [55], but, with the exception

of Vlach and Johnson [34], have not been studied in the context of

cross-situational word learning in the laboratory. The structure of the

statistics of natural learning experiences along these dimensions

also has not been studied.
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degree of word–referent ambiguity as measured by the
HSP varied considerably across parents and that this
ambiguity was predictive of later word learning, such that
toddlers who experienced less ambiguity went on to devel-
op larger vocabularies. Finally, in an ideal observer analy-
sis of word–referent co-occurrences in parents’ interactions
with their 6–18-month-old infants, Frank and colleagues
[35] found that parents mostly create unambiguous nam-
ing moments. If much of the early data are relatively clean,
infants could simply ignore moments that are too uncer-
tain [40] and use relatively simple statistical mechanisms
to determine the word–referent pairs from this cleaner
sample of co-occurrence data.

To date, the methods for measuring the structure in the
learning environment have taken word–referent co-occur-
rences from the world (videos of parent naming events) and
submitted these co-occurrences to powerful algorithms or
adult coders, analyzing the problem at the computational
level. There are two limits to this approach. First, the data
relevant to a statistical learner are not the data in the
world but the data in the world filtered through the lear-
ners’ sensory, attentional, and memory systems (Box 3).
Second, these filters – sensory, attentional, and memory
systems – are themselves statistical learners (e.g., [41–43])
that may not simply let information through to the learner
Box 3. Three lessons from the infant’s view of word learning

Developmental scientists have begun to take an ‘infant’s perspective’

on word learning by placing mini-lightweight head cameras [56–60] or

head-mounted eye trackers [61–63] on infants as they engage in

various tasks (Figure I). These new methods have documented unique

properties of infant views. The growing body of work employing this

technique has led to significant advancements in our understanding

early natural-vision [58], motor [61,63], social [62], object-processing

[64], and language [10,59,60] development.

For scholars of early word learning, the existing findings from

infants’ views have offered at least three important lessons. First, an

analysis of infants’ views raises the possible need to reconsider

fundamental assumptions about the problem of early word learning.

That is, multiple studies have demonstrated that the infants’ views of

events are significantly less cluttered than adults’ views of the same

events [1,2,4]. This insight is significant considering the assumption

that there is a high degree of referential uncertainty caused by

cluttered everyday environments [11]. Second, an analysis of infants’

views during naming events highlights the potential role of various

(A) 

Figure I. Image frames from an infant-view head camera and from a paren
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but may also weight that information in ways directly
linked to statistical computation and to the covariation
in the data. If these ideas are correct, we will need to
change the way we conceptualize the scope of statistical
word–referent learning and the way we measure the sta-
tistical regularities in the learning environment, and we
need to study how statistics are filtered and aggregated in
multiple mechanisms from attention, to memory, to deci-
sion processes.

We may also need to ask what is the signal and what is
the noise in the co-occurrence data. Consider again the
stream of learning experiences illustrated in Figure 1A; in
terms of the depicted co-occurrence matrix, these are very
noisy data with many ‘spurious’ correspondences. Howev-
er, in another sense these are not spurious correspon-
dences but examples of the coherent covariation that
characterizes learning environments; for infants, spoons
(and their name) may be typically experienced in contexts
of oatmeal and sippy cups (and their names). What is
already known about visual statistical learning [42,42],
about cued attention [44,45], about the priming of memo-
ries [46], and about the statistical structure of language [8]
is that this structure may actively help learners find the
right correspondences. For example, the word ‘bowl’ (or the
sight of a bowl) might predict the likely presence of spoons
visual properties in early word learning. In a series of studies in which

parents played with and talked about novel objects with their

toddlers, Yu, Smith, and their colleagues observed that the visual

properties of the target object during naming events (e.g., its image

size relative to other objects, its centeredness in the visual field)

predicted toddlers’ novel object-name learning [4,5], suggesting a

possible larger role for bottom-up cues to word learning than

previously suggested. This perceptual information may be directly

linked to internal statistical computations. Finally, the information

available in infants’ views during naming events may be more

conducive to and induce particular learning mechanisms. In a recent

study, Yurovsky and colleagues [38] found that when naming events

were viewed from an infant perspective (as opposed to a third-person

perspective), adult word learners were more likely to engage in an

aggregative, statistical word-learning process. Together, these findings

illustrate the need to take the infant’s views into account – statistical

information that makes contact with the infant’s learning system –

when developing mechanistic theories of early word learning.
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Box 4. Outstanding questions

� What are the linguistic regularities in early naming events:

isolated words, frequent frames, co-occurring object names?

� What are the visual regularities in early naming events: visually

isolated objects, saliency properties, co-occurring objects and

contexts?

� What are the regularities across words and objects and visual

contexts?

� What are the dynamic properties of repeated naming events:

within the seconds and minutes of working-memory processes,

within the hours, days, and weeks of infant learning experiences?

� Can these linguistic and visual regularities in the real world be

represented in the framework of cross-situational learning?

Review Trends in Cognitive Sciences May 2014, Vol. 18, No. 5
and enable the learner to find that referent in the visual
clutter; the word ‘bowl’ (or the sight of a bowl) may prime
and activate memories of spoons and their names, thereby
supporting the aggregation of information over time and
contexts.

Theories of infant word–referent learning treat the co-
occurrences between to-be-learned words and referents as
the signal and all else as noise. However, from another
perspective the ‘noise’ contains information: regularities
that interact with the sensory, attentional, and memory
processes on which cross-situational learning depends. It
may be through the interactions of multiple statistically
sensitive processes that novice learners simultaneously
solve multiple and mutually constraining tasks of map-
ping words to referents while building semantic networks
[47–50]. This proposal sets a possible agenda for future
research (Box 4).
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